... |
... |
@@ -4,85 +4,110 @@ |
4 |
4 |
(% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %) |
5 |
5 |
== (% class="mw-headline" id=".D0.9F.D0.B5.D1.80.D0.B2.D1.8B.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D1.8D.D0.BB.D0.BB.D0.B8.D0.BF.D1.81.D0.BE.D0.B2.29" %)Первый закон Кеплера (закон эллипсов)(%%) == |
6 |
6 |
|
7 |
|
-(% class="thumb tright" style="clear: right; float: right; margin-bottom: 0.8em; width: auto; margin-top: 0.5em; margin-left: 1.4em; border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; font-size: 13px; font-style: normal; " %) |
8 |
|
-((( |
9 |
|
-(% class="thumbinner" style="border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-top-color: rgb(204, 204, 204); border-right-color: rgb(204, 204, 204); border-bottom-color: rgb(204, 204, 204); border-left-color: rgb(204, 204, 204); padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; background-color: rgb(249, 249, 249); font-size: 12px; text-align: center; overflow-x: hidden; overflow-y: hidden; width: 222px; " %) |
10 |
|
-((( |
11 |
|
-[[[[image:http://upload.wikimedia.org/wikipedia/commons/thumb/4/45/Kepler%27s_law_1_ru.svg/220px-Kepler%27s_law_1_ru.svg.png||class="thumbimage" height="174" style="border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-width: initial; border-color: initial; vertical-align: middle; background-color: rgb(255, 255, 255); " width="220"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_1_ru.svg||class="image" style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; "]] |
12 |
12 |
|
13 |
|
-(% class="thumbcaption" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; line-height: 1.4em; padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; font-size: 11px; text-align: left; " %) |
14 |
|
-((( |
15 |
|
-(% class="magnify" style="border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; float: right; " %) |
16 |
|
-((( |
17 |
|
-[[[[image:http://bits.wikimedia.org/skins-1.19/common/images/magnify-clip.png||height="11" style="vertical-align: middle; display: block; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; " width="15"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_1_ru.svg||class="internal" style="color: rgb(11, 0, 128); background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; display: block; border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; " title="Увеличить"]] |
18 |
|
-))) |
19 |
19 |
|
20 |
|
-Первый закон Кеплера. |
|
9 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
10 |
+(% class="em" style="font-weight: bold; " %)Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. |
|
11 |
+ |
|
12 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
13 |
+На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка(% class="m" style="font-style: italic; " %)P(%%) траектории называется (% class="em" style="font-weight: bold; " %)перигелием(%%), точка (% class="m" style="font-style: italic; " %)A(%%), наиболее удаленная от Солнца – (% class="em" style="font-weight: bold; " %)афелием(%%). Расстояние между афелием и перигелием – большая ось эллипса. |
|
14 |
+ |
|
15 |
+(% align="center" cellpadding="5" style="font-family: Times; " width="1" %) |
|
16 |
+|(% style="font-size: 16px; font-family: times; " %)((( |
|
17 |
+(% style="text-align:center" %) |
|
18 |
+[[image:http://www.physics.ru/courses/op25part1/content/chapter1/section/paragraph24/images/1-24-2.gif]] |
21 |
21 |
))) |
|
20 |
+|(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="justify" class="caption" style="font-family: Times; font-size: 14px; " %) |
|
21 |
+((( |
|
22 |
+Рисунок 1.24.2.(% class="number" style="font-family: Times; font-size: 14px; " %)(%%)Эллиптическая орбита планеты массой (% class="m" style="font-style: italic; " %)m(%%) << (% class="m" style="font-style: italic; " %)M(%%). (% class="m" style="font-style: italic; " %)a(%%) – длина большой полуоси, (% class="m" style="font-style: italic; " %)F(%%) и (% class="m" style="font-style: italic; " %)F'(%%) – фокусы орбиты |
22 |
22 |
))) |
23 |
|
-))) |
24 |
24 |
|
25 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
26 |
|
-**Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.** |
|
25 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
26 |
+Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым. |
27 |
27 |
|
28 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
29 |
|
-Форма эллипса и степень его сходства с окружностью характеризуется отношением [[image:http://upload.wikimedia.org/wikipedia/ru/math/5/9/d/59defb038783312091fac0076635e4f9.png||alt="e=\frac{c}{a}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]], где [[image:http://upload.wikimedia.org/wikipedia/ru/math/4/a/8/4a8a08f09d37b73795649038408b5f33.png||alt="c" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), [[image:http://upload.wikimedia.org/wikipedia/ru/math/e/7/8/e78fce131adae0cfdae0b6a6d0ccead2.png||alt="{a}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — большая[[ >>url:http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B0%D1%8F_%D0%BF%D0%BE%D0%BB%D1%83%D0%BE%D1%81%D1%8C||style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; " title="Большая полуось"]]полуось. Величина [[image:http://upload.wikimedia.org/wikipedia/ru/math/e/1/6/e1671797c52e15f763380b45e841ec32.png||alt="e" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] называется эксцентриситетом эллипса. При [[image:http://upload.wikimedia.org/wikipedia/ru/math/6/3/3/633bff1fa0b2fabb9e12f0f4285e42cb.png||alt="c=0" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/4/9/4/494664a716200bae107177b8077ade60.png||alt="e=0" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]]эллипс превращается в окружность. |
|
28 |
+(% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %) |
|
29 |
+== (% class="mw-headline" id=".D0.92.D1.82.D0.BE.D1.80.D0.BE.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.BF.D0.BB.D0.BE.D1.89.D0.B0.D0.B4.D0.B5.D0.B9.29" %)Второй закон Кеплера (закон площадей)(%%) == |
30 |
30 |
|
31 |
31 |
|
|
32 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
33 |
+(% class="em" style="font-weight: bold; " %)Радиус-вектор планеты описывает в равные промежутки времени равные площади. |
32 |
32 |
|
|
35 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
36 |
+Рис. 1.24.3 иллюстрирует 2-й закон Кеплера. |
33 |
33 |
|
34 |
|
-(% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %) |
35 |
|
-== (% class="mw-headline" id=".D0.92.D1.82.D0.BE.D1.80.D0.BE.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.BF.D0.BB.D0.BE.D1.89.D0.B0.D0.B4.D0.B5.D0.B9.29" %)Второй закон Кеплера (закон площадей)(%%) == |
|
38 |
+ |
36 |
36 |
|
37 |
|
-(% class="thumb tright" style="clear: right; float: right; margin-bottom: 0.8em; width: auto; margin-top: 0.5em; margin-left: 1.4em; border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; font-size: 13px; font-style: normal; " %) |
|
40 |
+(% align="center" cellpadding="5" style="font-family: Times; " width="1" %) |
|
41 |
+|(% style="font-size: 16px; font-family: times; " %)((( |
|
42 |
+(% style="text-align:center" %) |
|
43 |
+[[image:http://www.physics.ru/courses/op25part1/content/chapter1/section/paragraph24/images/1-24-3.gif]] |
|
44 |
+))) |
|
45 |
+|(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="center" class="caption" style="font-family: Times; font-size: 14px; " %) |
38 |
38 |
((( |
39 |
|
-(% class="thumbinner" style="border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-top-color: rgb(204, 204, 204); border-right-color: rgb(204, 204, 204); border-bottom-color: rgb(204, 204, 204); border-left-color: rgb(204, 204, 204); padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; background-color: rgb(249, 249, 249); font-size: 12px; text-align: center; overflow-x: hidden; overflow-y: hidden; width: 222px; " %) |
40 |
|
-((( |
41 |
|
-[[[[image:http://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Kepler%27s_law_2_ru.svg/220px-Kepler%27s_law_2_ru.svg.png||class="thumbimage" height="153" style="border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-width: initial; border-color: initial; vertical-align: middle; background-color: rgb(255, 255, 255); " width="220"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_2_ru.svg||class="image" style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; "]] |
42 |
|
- |
43 |
|
-(% class="thumbcaption" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; line-height: 1.4em; padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; font-size: 11px; text-align: left; " %) |
44 |
|
-((( |
45 |
|
-(% class="magnify" style="border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; float: right; " %) |
46 |
|
-((( |
47 |
|
-[[[[image:http://bits.wikimedia.org/skins-1.19/common/images/magnify-clip.png||height="11" style="vertical-align: middle; display: block; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; " width="15"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_2_ru.svg||class="internal" style="color: rgb(11, 0, 128); background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; display: block; border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; " title="Увеличить"]] |
|
47 |
+Рисунок 1.24.3.Закон площадей – второй закон Кеплера |
48 |
48 |
))) |
49 |
49 |
|
50 |
|
-Второй закон Кеплера. |
|
50 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
51 |
+Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790205-1.gif||align="middle"]] и его составляющие [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790205-2.gif||align="middle"]] и [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790215-3.gif||align="middle"]] Площадь, заметенная радиус-вектором за малое время Δ(% class="m" style="font-style: italic; " %)t(%%), приближенно равна площади треугольника с основанием (% class="m" style="font-style: italic; " %)r(%%)Δθ и высотой (% class="m" style="font-style: italic; " %)r(%%): |
|
52 |
+ |
|
53 |
+(% align="center" border="0" cellpadding="0" cellspacing="0" %) |
|
54 |
+|(% align="center" style="font-size: 16px; font-family: times; " %)(% class="formula" %)[[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790235-4.gif||align="middle"]] |
|
55 |
+ |
|
56 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
57 |
+Здесь [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790235-5.gif||align="middle"]] – угловая скорость. |
|
58 |
+ |
|
59 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
60 |
+Момент импульса (% class="m" style="font-style: italic; " %)L(%%) по абсолютной величине равен произведению модулей векторов [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790315-6.gif||align="middle"]] и [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790315-7.gif||align="middle"]] |
|
61 |
+ |
|
62 |
+(% align="center" border="0" cellpadding="0" cellspacing="0" %) |
|
63 |
+|(% align="center" style="font-size: 16px; font-family: times; " %)((( |
|
64 |
+(% align="justify" style="margin-top: 5px; margin-bottom: 10px; " %) |
|
65 |
+[[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790325-8.gif||align="middle"]] так как [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790325-9.gif||align="middle"]] |
51 |
51 |
))) |
52 |
|
-))) |
53 |
|
-))) |
54 |
54 |
|
55 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
56 |
|
-**Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.** |
|
68 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
69 |
+Из этих отношений следует: |
57 |
57 |
|
58 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
59 |
|
-Применительное к нашей Солнечной системе, с этим законом связаны два понятия: **перегелий** — ближайшая к Солнцу точка орбиты, и **афелий** — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии. |
|
71 |
+(% align="center" border="0" cellpadding="0" cellspacing="0" %) |
|
72 |
+|(% align="center" style="font-size: 16px; font-family: times; " %)(% class="formula" %)[[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790325-10.gif||align="middle"]] |
60 |
60 |
|
61 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
62 |
|
-Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклептике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу. |
|
74 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
75 |
+Поэтому, если по второму закону Кеплера [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790335-11.gif||align="middle"]] то и момент импульса (% class="m" style="font-style: italic; " %)L(%%) при движении остается неизменным. |
63 |
63 |
|
|
77 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
78 |
+В частности, поскольку скорости планеты в перигелии [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790335-12.gif||align="middle"]] и афелии [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790345-13.gif||align="middle"]] направлены перпендикулярно радиус-векторам [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790345-14.gif||align="middle"]] и [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790345-15.gif||align="middle"]] из закона сохранения момента импульса следует: |
64 |
64 |
|
|
80 |
+(% align="center" border="0" cellpadding="0" cellspacing="0" %) |
|
81 |
+|(% align="center" style="font-size: 16px; font-family: times; " %)(% class="formula m" style="font-style: italic; " %)r,,P,,(% class="formula" %)υ(% class="formula m" style="font-style: italic; " %),,P,,(% class="formula" %) = (% class="formula m" style="font-style: italic; " %)r,,A,,(% class="formula" %)υ(% class="formula m" style="font-style: italic; " %),,A,,(% class="formula" %). |
|
82 |
+ |
65 |
65 |
(% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %) |
66 |
66 |
== (% class="mw-headline" id=".D0.A2.D1.80.D0.B5.D1.82.D0.B8.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B3.D0.B0.D1.80.D0.BC.D0.BE.D0.BD.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD.29" %)Третий закон Кеплера (гармонический закон)(%%) == |
67 |
67 |
|
68 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
69 |
|
-**Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.** Справедливо не только для планет, но и для их спутников. |
70 |
70 |
|
71 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
72 |
|
-[[image:http://upload.wikimedia.org/wikipedia/ru/math/b/c/1/bc11383ee0ec44617bbbf051e0ae6e5a.png||alt="\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]], где [[image:http://upload.wikimedia.org/wikipedia/ru/math/a/5/7/a5749ec33f2c95fe8c19d702d76d4968.png||alt="T_1" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/f/0/6/f066e1184caa1b9991cbceb207ea6341.png||alt="T_2" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — периоды обращения двух планет вокруг Солнца, а [[image:http://upload.wikimedia.org/wikipedia/ru/math/8/e/6/8e6ba967645c302e1f2a60ec9c341e5c.png||alt="a_1" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/0/f/7/0f768ac5d5dea8d93716a27da05871de.png||alt="a_2" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — длины больших полуосей их орбит. |
|
87 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
88 |
+(% class="em" style="font-weight: bold; " %)Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит: |
73 |
73 |
|
74 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
75 |
|
-Ньютон установил, что гравитационное[[ >>url:http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%8F||style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; " title="Гравитация"]]притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты: [[image:http://upload.wikimedia.org/wikipedia/ru/math/1/8/e/18eec9249c168c57c2db14adc5a7a5e7.png||alt="\frac{T_1^2(M+m_1)}{T_2^2(M+m_2)} = \frac{a_1^3}{a_2^3}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]], где [[image:http://upload.wikimedia.org/wikipedia/ru/math/6/9/6/69691c7bdcc3ce6d5d8a1361f22d04ac.png||alt="M" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — масса Солнца, а [[image:http://upload.wikimedia.org/wikipedia/ru/math/b/7/6/b76530f37a5cbc3d17ebe8df6fed402f.png||alt="m_1" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/b/d/d/bdd1c7307b88ad20fe151890256e325a.png||alt="m_2" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — массы планет. |
|
90 |
+[[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790355-16.gif||align="middle" style="font-style: normal; font-size: 16px; color: rgb(68, 68, 68); line-height: 22px; text-align: justify; background-color: rgb(255, 255, 206); "]] или (% style="color: rgb(68, 68, 68); font-size: 16px; font-style: normal; line-height: 22px; text-align: justify; background-color: rgb(255, 255, 206); " %) [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790365-17.gif||align="middle" style="font-style: normal; font-size: 16px; color: rgb(68, 68, 68); line-height: 22px; text-align: justify; background-color: rgb(255, 255, 206); "]] |
76 |
76 |
|
77 |
|
-(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
78 |
|
-Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды. |
79 |
79 |
|
|
93 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
94 |
+Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %. |
80 |
80 |
|
|
96 |
+(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
|
97 |
+На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом (% class="m" style="font-style: italic; " %)R(%%), а другая – эллиптическая с большой полуосью (% class="m" style="font-style: italic; " %)a(%%). Третий закон утверждает, что если (% class="m" style="font-style: italic; " %)R(%%) = (% class="m" style="font-style: italic; " %)a(%%), то периоды обращения тел по этим орбитам одинаковы. |
|
98 |
+ |
|
99 |
+(% align="center" cellpadding="5" style="font-family: Times; " width="1" %) |
|
100 |
+|(% style="font-size: 16px; font-family: times; " %)((( |
|
101 |
+(% style="text-align:center" %) |
|
102 |
+[[image:http://www.physics.ru/courses/op25part1/content/chapter1/section/paragraph24/images/1-24-4.gif]] |
|
103 |
+))) |
|
104 |
+|(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="justify" class="caption" style="font-family: Times; font-size: 14px; " %) |
|
105 |
+((( |
|
106 |
+Рисунок 1.24.4.Круговая и эллиптическая орбиты. При (% class="m" style="font-style: italic; " %)R(%%) = (% class="m" style="font-style: italic; " %)a(%%) периоды обращения тел по этим орбитам одинаковы |
|
107 |
+))) |
|
108 |
+ |
81 |
81 |
Автор: |
82 |
82 |
|
83 |
83 |
Шкурко В.И. |
84 |
84 |
|
85 |
85 |
группа 2-ТМ-55 |
86 |
|
- |
87 |
|
- |
88 |
|
- |