... |
... |
@@ -4,27 +4,33 @@ |
4 |
4 |
(% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %) |
5 |
5 |
== (% class="mw-headline" id=".D0.9F.D0.B5.D1.80.D0.B2.D1.8B.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D1.8D.D0.BB.D0.BB.D0.B8.D0.BF.D1.81.D0.BE.D0.B2.29" %)Первый закон Кеплера (закон эллипсов)(%%) == |
6 |
6 |
|
|
7 |
+(% class="thumb tright" style="clear: right; float: right; margin-bottom: 0.8em; width: auto; margin-top: 0.5em; margin-left: 1.4em; border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; font-size: 13px; font-style: normal; " %) |
|
8 |
+((( |
|
9 |
+(% class="thumbinner" style="border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-top-color: rgb(204, 204, 204); border-right-color: rgb(204, 204, 204); border-bottom-color: rgb(204, 204, 204); border-left-color: rgb(204, 204, 204); padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; background-color: rgb(249, 249, 249); font-size: 12px; text-align: center; overflow-x: hidden; overflow-y: hidden; width: 222px; " %) |
|
10 |
+((( |
|
11 |
+[[[[image:http://upload.wikimedia.org/wikipedia/commons/thumb/4/45/Kepler%27s_law_1_ru.svg/220px-Kepler%27s_law_1_ru.svg.png||class="thumbimage" height="174" style="border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-width: initial; border-color: initial; vertical-align: middle; background-color: rgb(255, 255, 255); " width="220"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_1_ru.svg||class="image" style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; "]] |
7 |
7 |
|
|
13 |
+(% class="thumbcaption" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; line-height: 1.4em; padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; font-size: 11px; text-align: left; " %) |
|
14 |
+((( |
|
15 |
+(% class="magnify" style="border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; float: right; " %) |
|
16 |
+((( |
|
17 |
+[[[[image:http://bits.wikimedia.org/skins-1.19/common/images/magnify-clip.png||height="11" style="vertical-align: middle; display: block; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; " width="15"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_1_ru.svg||class="internal" style="color: rgb(11, 0, 128); background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; display: block; border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; " title="Увеличить"]] |
|
18 |
+))) |
8 |
8 |
|
9 |
|
-(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
10 |
|
-(% class="em" style="font-weight: bold; " %)Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. |
11 |
|
- |
12 |
|
-(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
13 |
|
-На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка(% class="m" style="font-style: italic; " %)P(%%) траектории называется (% class="em" style="font-weight: bold; " %)перигелием(%%), точка (% class="m" style="font-style: italic; " %)A(%%), наиболее удаленная от Солнца – (% class="em" style="font-weight: bold; " %)афелием(%%). Расстояние между афелием и перигелием – большая ось эллипса. |
14 |
|
- |
15 |
|
-(% align="center" cellpadding="5" style="font-family: Times; " width="1" %) |
16 |
|
-|(% style="font-size: 16px; font-family: times; " %)((( |
17 |
|
-(% style="text-align:center" %) |
18 |
|
-[[image:http://www.physics.ru/courses/op25part1/content/chapter1/section/paragraph24/images/1-24-2.gif]] |
|
20 |
+Первый закон Кеплера. |
19 |
19 |
))) |
20 |
|
-|(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="justify" class="caption" style="font-family: Times; font-size: 14px; " %) |
21 |
|
-((( |
22 |
|
-Рисунок 1.24.2.(% class="number" style="font-family: Times; font-size: 14px; " %)(%%)Эллиптическая орбита планеты массой (% class="m" style="font-style: italic; " %)m(%%) << (% class="m" style="font-style: italic; " %)M(%%). (% class="m" style="font-style: italic; " %)a(%%) – длина большой полуоси, (% class="m" style="font-style: italic; " %)F(%%) и (% class="m" style="font-style: italic; " %)F'(%%) – фокусы орбиты |
23 |
23 |
))) |
|
23 |
+))) |
24 |
24 |
|
25 |
|
-(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %) |
26 |
|
-Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым. |
|
25 |
+(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
|
26 |
+**Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.** |
27 |
27 |
|
|
28 |
+(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %) |
|
29 |
+Форма эллипса и степень его сходства с окружностью характеризуется отношением [[image:http://upload.wikimedia.org/wikipedia/ru/math/5/9/d/59defb038783312091fac0076635e4f9.png||alt="e=\frac{c}{a}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]], где [[image:http://upload.wikimedia.org/wikipedia/ru/math/4/a/8/4a8a08f09d37b73795649038408b5f33.png||alt="c" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), [[image:http://upload.wikimedia.org/wikipedia/ru/math/e/7/8/e78fce131adae0cfdae0b6a6d0ccead2.png||alt="{a}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — большая[[ >>url:http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B0%D1%8F_%D0%BF%D0%BE%D0%BB%D1%83%D0%BE%D1%81%D1%8C||style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; " title="Большая полуось"]]полуось. Величина [[image:http://upload.wikimedia.org/wikipedia/ru/math/e/1/6/e1671797c52e15f763380b45e841ec32.png||alt="e" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] называется эксцентриситетом эллипса. При [[image:http://upload.wikimedia.org/wikipedia/ru/math/6/3/3/633bff1fa0b2fabb9e12f0f4285e42cb.png||alt="c=0" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/4/9/4/494664a716200bae107177b8077ade60.png||alt="e=0" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]]эллипс превращается в окружность. |
|
30 |
+ |
|
31 |
+ |
|
32 |
+ |
|
33 |
+ |
28 |
28 |
(% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %) |
29 |
29 |
== (% class="mw-headline" id=".D0.92.D1.82.D0.BE.D1.80.D0.BE.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.BF.D0.BB.D0.BE.D1.89.D0.B0.D0.B4.D0.B5.D0.B9.29" %)Второй закон Кеплера (закон площадей)(%%) == |
30 |
30 |
|
... |
... |
@@ -80,6 +80,7 @@ |
80 |
80 |
(% align="center" border="0" cellpadding="0" cellspacing="0" %) |
81 |
81 |
|(% align="center" style="font-size: 16px; font-family: times; " %)(% class="formula m" style="font-style: italic; " %)r,,P,,(% class="formula" %)υ(% class="formula m" style="font-style: italic; " %),,P,,(% class="formula" %) = (% class="formula m" style="font-style: italic; " %)r,,A,,(% class="formula" %)υ(% class="formula m" style="font-style: italic; " %),,A,,(% class="formula" %). |
82 |
82 |
|
|
89 |
+ |
83 |
83 |
(% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %) |
84 |
84 |
== (% class="mw-headline" id=".D0.A2.D1.80.D0.B5.D1.82.D0.B8.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B3.D0.B0.D1.80.D0.BC.D0.BE.D0.BD.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD.29" %)Третий закон Кеплера (гармонический закон)(%%) == |
85 |
85 |
|
... |
... |
@@ -103,7 +103,7 @@ |
103 |
103 |
))) |
104 |
104 |
|(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="justify" class="caption" style="font-family: Times; font-size: 14px; " %) |
105 |
105 |
((( |
106 |
|
-Рисунок 1.24.4.Круговая и эллиптическая орбиты. При (% class="m" style="font-style: italic; " %)R(%%) = (% class="m" style="font-style: italic; " %)a(%%) периоды обращения тел по этим орбитам одинаковы |
|
113 |
+Рисунок 1.24.4.(% class="number" style="font-family: Times; font-size: 14px; " %)(%%)Круговая и эллиптическая орбиты. При (% class="m" style="font-style: italic; " %)R(%%) = (% class="m" style="font-style: italic; " %)a(%%) периоды обращения тел по этим орбитам одинаковы |
107 |
107 |
))) |
108 |
108 |
|
109 |
109 |
Автор: |