Изменения документа Законы Кеплера

Редактировал(а) Dmitry Fedin 2018/10/19 11:41

От версии Icon 2.1 Icon
отредактировано Student
на 2012/05/17 00:48
Изменить комментарий: К данной версии нет комментариев
К версии Icon 4.1 Icon
отредактировано Student
на 2012/05/17 00:51
Изменить комментарий: К данной версии нет комментариев

Сводка

Подробности

Icon Свойства страницы
Содержимое
... ... @@ -4,33 +4,27 @@
4 4  (% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %)
5 5  == (% class="mw-headline" id=".D0.9F.D0.B5.D1.80.D0.B2.D1.8B.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D1.8D.D0.BB.D0.BB.D0.B8.D0.BF.D1.81.D0.BE.D0.B2.29" %)Первый закон Кеплера (закон эллипсов)(%%) ==
6 6  
7 -(% class="thumb tright" style="clear: right; float: right; margin-bottom: 0.8em; width: auto; margin-top: 0.5em; margin-left: 1.4em; border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; font-size: 13px; font-style: normal; " %)
8 -(((
9 -(% class="thumbinner" style="border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-top-color: rgb(204, 204, 204); border-right-color: rgb(204, 204, 204); border-bottom-color: rgb(204, 204, 204); border-left-color: rgb(204, 204, 204); padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; background-color: rgb(249, 249, 249); font-size: 12px; text-align: center; overflow-x: hidden; overflow-y: hidden; width: 222px; " %)
10 -(((
11 -[[[[image:http://upload.wikimedia.org/wikipedia/commons/thumb/4/45/Kepler%27s_law_1_ru.svg/220px-Kepler%27s_law_1_ru.svg.png||class="thumbimage" height="174" style="border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-width: initial; border-color: initial; vertical-align: middle; background-color: rgb(255, 255, 255); " width="220"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_1_ru.svg||class="image" style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; "]]
12 12  
13 -(% class="thumbcaption" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; line-height: 1.4em; padding-top: 3px !important; padding-right: 3px !important; padding-bottom: 3px !important; padding-left: 3px !important; font-size: 11px; text-align: left; " %)
14 -(((
15 -(% class="magnify" style="border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; float: right; " %)
16 -(((
17 -[[[[image:http://bits.wikimedia.org/skins-1.19/common/images/magnify-clip.png||height="11" style="vertical-align: middle; display: block; background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; " width="15"]]>>url:http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kepler%27s_law_1_ru.svg||class="internal" style="color: rgb(11, 0, 128); background-image: none !important; background-attachment: initial !important; background-origin: initial !important; background-clip: initial !important; background-color: initial !important; display: block; border-top-style: none !important; border-right-style: none !important; border-bottom-style: none !important; border-left-style: none !important; border-width: initial !important; " title="Увеличить"]]
18 -)))
19 19  
20 -Первый закон Кеплера.
9 +(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %)
10 +(% class="em" style="font-weight: bold; " %)Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.
11 +
12 +(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %)
13 +На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка(% class="m" style="font-style: italic; " %)P(%%) траектории называется (% class="em" style="font-weight: bold; " %)перигелием(%%), точка (% class="m" style="font-style: italic; " %)A(%%), наиболее удаленная от Солнца – (% class="em" style="font-weight: bold; " %)афелием(%%). Расстояние между афелием и перигелием – большая ось эллипса.
14 +
15 +(% align="center" cellpadding="5" style="font-family: Times; " width="1" %)
16 +|(% style="font-size: 16px; font-family: times; " %)(((
17 +(% style="text-align:center" %)
18 +[[image:http://www.physics.ru/courses/op25part1/content/chapter1/section/paragraph24/images/1-24-2.gif]]
21 21  )))
20 +|(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="justify" class="caption" style="font-family: Times; font-size: 14px; " %)
21 +(((
22 +Рисунок 1.24.2.(% class="number" style="font-family: Times; font-size: 14px; " %)(%%)Эллиптическая орбита планеты массой (% class="m" style="font-style: italic; " %)m(%%) << (% class="m" style="font-style: italic; " %)M(%%). (% class="m" style="font-style: italic; " %)a(%%) – длина большой полуоси, (% class="m" style="font-style: italic; " %)F(%%) и (% class="m" style="font-style: italic; " %)F'(%%) – фокусы орбиты
22 22  )))
23 -)))
24 24  
25 -(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %)
26 -**Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.**
25 +(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %)
26 +Почти все планеты Солнечной системы роме Плутона) движутся по орбитам, близким к круговым.
27 27  
28 -(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %)
29 -Форма эллипса и степень его сходства с окружностью характеризуется отношением [[image:http://upload.wikimedia.org/wikipedia/ru/math/5/9/d/59defb038783312091fac0076635e4f9.png||alt="e=\frac{c}{a}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]], где [[image:http://upload.wikimedia.org/wikipedia/ru/math/4/a/8/4a8a08f09d37b73795649038408b5f33.png||alt="c" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), [[image:http://upload.wikimedia.org/wikipedia/ru/math/e/7/8/e78fce131adae0cfdae0b6a6d0ccead2.png||alt="{a}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — большая[[ >>url:http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B0%D1%8F_%D0%BF%D0%BE%D0%BB%D1%83%D0%BE%D1%81%D1%8C||style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; " title="Большая полуось"]]полуось. Величина [[image:http://upload.wikimedia.org/wikipedia/ru/math/e/1/6/e1671797c52e15f763380b45e841ec32.png||alt="e" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] называется эксцентриситетом эллипса. При [[image:http://upload.wikimedia.org/wikipedia/ru/math/6/3/3/633bff1fa0b2fabb9e12f0f4285e42cb.png||alt="c=0" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/4/9/4/494664a716200bae107177b8077ade60.png||alt="e=0" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]]эллипс превращается в окружность.
30 -
31 -
32 -
33 -
34 34  (% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %)
35 35  == (% class="mw-headline" id=".D0.92.D1.82.D0.BE.D1.80.D0.BE.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.BF.D0.BB.D0.BE.D1.89.D0.B0.D0.B4.D0.B5.D0.B9.29" %)Второй закон Кеплера (закон площадей)(%%) ==
36 36  
... ... @@ -50,7 +50,7 @@
50 50  )))
51 51  |(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="center" class="caption" style="font-family: Times; font-size: 14px; " %)
52 52  (((
53 -Рисунок 1.24.3.(% class="number" style="font-family: Times; font-size: 14px; " %)(%%)Закон площадей – второй закон Кеплера
47 +Рисунок 1.24.3.Закон площадей – второй закон Кеплера
54 54  )))
55 55  
56 56  (% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %)
... ... @@ -86,28 +86,34 @@
86 86  (% align="center" border="0" cellpadding="0" cellspacing="0" %)
87 87  |(% align="center" style="font-size: 16px; font-family: times; " %)(% class="formula m" style="font-style: italic; " %)r,,P,,(% class="formula" %)υ(% class="formula m" style="font-style: italic; " %),,P,,(% class="formula" %) = (% class="formula m" style="font-style: italic; " %)r,,A,,(% class="formula" %)υ(% class="formula m" style="font-style: italic; " %),,A,,(% class="formula" %).
88 88  
89 -
90 -
91 91  (% style="background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; margin-top: 0px; margin-bottom: 0.6em; overflow-x: hidden; overflow-y: hidden; padding-top: 0.5em; padding-bottom: 0.17em; border-bottom-color: rgb(170, 170, 170); font-size: 19px; font-style: normal; line-height: 19px; " %)
92 92  == (% class="mw-headline" id=".D0.A2.D1.80.D0.B5.D1.82.D0.B8.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD_.D0.9A.D0.B5.D0.BF.D0.BB.D0.B5.D1.80.D0.B0_.28.D0.B3.D0.B0.D1.80.D0.BC.D0.BE.D0.BD.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD.29" %)Третий закон Кеплера (гармонический закон)(%%) ==
93 93  
94 -(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %)
95 -**Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.** Справедливо не только для планет, но и для их спутников.
96 96  
97 -(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %)
98 -[[image:http://upload.wikimedia.org/wikipedia/ru/math/b/c/1/bc11383ee0ec44617bbbf051e0ae6e5a.png||alt="\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]], где [[image:http://upload.wikimedia.org/wikipedia/ru/math/a/5/7/a5749ec33f2c95fe8c19d702d76d4968.png||alt="T_1" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/f/0/6/f066e1184caa1b9991cbceb207ea6341.png||alt="T_2" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] периоды обращения двух планет вокруг Солнца, а [[image:http://upload.wikimedia.org/wikipedia/ru/math/8/e/6/8e6ba967645c302e1f2a60ec9c341e5c.png||alt="a_1" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/0/f/7/0f768ac5d5dea8d93716a27da05871de.png||alt="a_2" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — длины больших полуосей их орбит.
87 +(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %)
88 +(% class="em" style="font-weight: bold; " %)Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:
99 99  
100 -(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %)
101 -Ньютон установил, что гравитационное[[ >>url:http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D1%8F||style="color: rgb(11, 0, 128); background-image: none; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: initial; " title="Гравитация"]]притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты: [[image:http://upload.wikimedia.org/wikipedia/ru/math/1/8/e/18eec9249c168c57c2db14adc5a7a5e7.png||alt="\frac{T_1^2(M+m_1)}{T_2^2(M+m_2)} = \frac{a_1^3}{a_2^3}" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]], где [[image:http://upload.wikimedia.org/wikipedia/ru/math/6/9/6/69691c7bdcc3ce6d5d8a1361f22d04ac.png||alt="M" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — масса Солнца, а [[image:http://upload.wikimedia.org/wikipedia/ru/math/b/7/6/b76530f37a5cbc3d17ebe8df6fed402f.png||alt="m_1" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] и [[image:http://upload.wikimedia.org/wikipedia/ru/math/b/d/d/bdd1c7307b88ad20fe151890256e325a.png||alt="m_2" class="tex" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial; vertical-align: middle; "]] — массы планет.
90 +[[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790355-16.gif||align="middle" style="font-style: normal; font-size: 16px; color: rgb(68, 68, 68); line-height: 22px; text-align: justify; background-color: rgb(255, 255, 206); "]] или (% style="color: rgb(68, 68, 68); font-size: 16px; font-style: normal; line-height: 22px; text-align: justify; background-color: rgb(255, 255, 206); " %) [[image:http://www.physics.ru/courses/op25part1/content/javagifs/63229980790365-17.gif||align="middle" style="font-style: normal; font-size: 16px; color: rgb(68, 68, 68); line-height: 22px; text-align: justify; background-color: rgb(255, 255, 206); "]]
102 102  
103 -(% style="margin-top: 0.4em; margin-bottom: 0.5em; line-height: 19px; font-size: 13px; font-style: normal; " %)
104 -Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.
105 105  
93 +(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %)
94 +Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.
106 106  
96 +(% align="justify" style="font-family: Times; font-size: 16px; font-style: normal; line-height: normal; margin-top: 5px; margin-bottom: 10px; " %)
97 +На рис. 1.24.4 изображены две орбиты, одна из которых – круговая с радиусом (% class="m" style="font-style: italic; " %)R(%%), а другая – эллиптическая с большой полуосью (% class="m" style="font-style: italic; " %)a(%%). Третий закон утверждает, что если (% class="m" style="font-style: italic; " %)R(%%) = (% class="m" style="font-style: italic; " %)a(%%), то периоды обращения тел по этим орбитам одинаковы.
98 +
99 +(% align="center" cellpadding="5" style="font-family: Times; " width="1" %)
100 +|(% style="font-size: 16px; font-family: times; " %)(((
101 +(% style="text-align:center" %)
102 +[[image:http://www.physics.ru/courses/op25part1/content/chapter1/section/paragraph24/images/1-24-4.gif]]
103 +)))
104 +|(% align="CENTER" style="font-size: 16px; font-family: times; " %)(% align="justify" class="caption" style="font-family: Times; font-size: 14px; " %)
105 +(((
106 +Рисунок 1.24.4.Круговая и эллиптическая орбиты. При (% class="m" style="font-style: italic; " %)R(%%) = (% class="m" style="font-style: italic; " %)a(%%) периоды обращения тел по этим орбитам одинаковы
107 +)))
108 +
107 107  Автор:
108 108  
109 109  Шкурко В.И.
110 110  
111 111  группа 2-ТМ-55
112 -
113 -